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Abstract: A method known as conflict probability esti-
mation (CPE) is presented to estimate the probability of
conflict for pairs of aircraft with uncertain predicted tra-
jectories. It is a generalization of a previous method that
applied to level flight only. The generalized method is
equivalent to the previous exact analytical solution for the
special case of level flight, but it also gives an approximate
analytical solution for non-level flight. The trajectory pre-
diction errors are modeled as Gaussian, and the two error
covariances for an aircraft pair are combined into a single,
equivalent covariance of the relative position. A coordi-
nate transformation is then used to derive the analytical
solution. A Monte Carlo simulation demonstrates that the
CPE algorithm is accurate, assuming the validity of the
simplifying assumptions and the accuracy of the underly-
ing prediction error model. Numerical examples are pre-
sented.

Introduction

The economics and efficiency of air transportation in the
continental U.S. will improve significantly when the cur-
rent routing restrictions are relaxed to allow more direct or
wind-optimal trajectories. The current system of static jet
routes imposes structure on the en-route airspace, which
helps to maintain an orderly flow of traffic, but it also
forces aircraft to fly inefficient, zig-zag routes. Fortunately,
new air traffic management (ATM) systems are being de-
veloped that will allow safety to be maintained with a less
constrained airspace structure. The improved routing effi-
ciency could save the airline industry several billion dollars
per year. The methods presented in this paper apply to
the current system, but they will be even more useful in a
future, less constrained, ATM system.

The safety and efficiency of ATM can benefit now,
and even more so in the future, from automated conflict
prediction and resolution advisories. Conflict prediction is
based on inexact trajectory prediction, however, and is it-
self therefore inexact. The farther in advance a prediction
is made, the less certain it is, particularly in the along-
track direction. For better efficiency, aircraft are usually
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flown at constant airspeed or Mach number rather than
constant ground-speed, and the uncompensated effects of
wind modeling and prediction errors accumulate with time.
A method is needed, therefore, to estimate the probabil-
ity of conflict, where a conflict is defined as two or more
aircraft coming within the minimum allowed separation
distance of each other. The minimum allowed horizontal
separation for en-route airspace is currently 5 nmi. The
vertical separation requirement above 29,000 ft altitude
(FL290) is currently 2000 ft; below FL290 it is 1000 ft.

Conflict resolution can be broadly classified as strate-
gic or tactical, depending on how far in advance the res-
olution maneuver is executed. Early conflict resolution is
considered strategic, and later resolution is considered tac-
tical, where the boundary between early and late is approx-
imately six to eight minutes before the potential conflict.
Strategic conflict resolution is concerned primarily with
efficiency, whereas tactical conflict resolution is more con-
cerned with safety. The optimal time to initiate a conflict
resolution maneuver is a trade-off between efficiency and
certainty. The farther in advance a maneuver is initiated,
the more efficient it is likely to be in terms of time and/or
fuel, but the less certain will be exactly what maneuver
is required or whether a maneuver is required at all. The
later a maneuver is initiated, on the other hand, the more
certain will be exactly what maneuver is required, but the
less efficient and less subtle the maneuver is likely to be.
The determination of the optimal time to initiate a maneu-
ver, therefore, requires an estimate of conflict probability.

For efficient strategic conflict resolution, the deter-
mination of the maneuver itself also requires a method
of estimating conflict probability, because the objective
is to reduce the conflict probability to some acceptable
level. Strategic conflict resolution cannot reduce the con-
flict probability to zero without introducing unnecessary
inefficiency, but it does not need to do so because it is not
the last line of defense. Human air traffic controllers still
have, and will continue to have, responsibility for aircraft
separation, and the Conflict Alert system gives them an
automatic three-minute warning of projected conflicts. As
an additional safety measure, the radar-based Traffic alert
and Collision Avoidance System (TCAS) onboard aircraft
warns pilots of potential conflicts so they can execute emer-
gency collision-avoidance maneuvers when necessary.

A method known as conflict probability estimation
(CPE) is developed in this paper to estimate the probabil-



ity of conflict for pairs of aircraft with uncertain predicted
trajectories. It is a generalization to non-level flight of
the CPE method presented in [1] for level flight, and it su-
percedes that method. To make this paper complete, some
steps of the earlier method must be essentially repeated.
The trajectory prediction errors are modeled as Gaussian
(i-e., normally distributed), and the two error covariances
for an aircraft pair are combined into a single, equivalent
covariance of the relative position, as before. A coordinate
transformation is then used to derive an analytical solu-
tion. That solution is exact for level flight, given certain
assumptions, and is approximate for non-level flight.

The CPE algorithm has been programmed in C++
as an independent module that can be used in any ATM
conflict detection and resolution system. It has also been
integrated into the Center-TRACON Automation System
(CTAS) [2, 7], an ATM decision support system that has
been developed at NASA Ames and installed for testing
at two of the Air Route Traffic Control Centers (ARTCC)
operated by the Federal Aviation Administration (FAA).
In CTAS, the conflict probability is not displayed directly
to air traffic controllers, but it is used to determine when
to alert controllers of a potential conflict and what color
code to use for the alert. The main focus of this paper is
theoretical rather than operational, but some of the oper-
ational considerations are discussed in [3]. As mentioned
earlier, CPE could also eventually be used in CTAS to help
resolve conflicts efficiently, and that potential application
motivates the current work. However, both the theoret-
ical and operational aspects of applying CPE to conflict
resolution are beyond the scope of this paper.

Other CPE algorithms have also appeared in the lit-
erature. Warren presented a CPE algorithm similar to the
one presented here, but it was relegated to the appendix
of a report [5], with an incomplete derivation and no val-
idation. Krozel et al. [6] derived a CPE algorithm based
on a first-order Taylor series expansion, but they did not
present any validation, and their brief discussion of the
stochastic error model was solely in terms of navigational
accuracy, with no consideration of the larger effects of wind
modeling error. Another approach was taken by Yang and
Kuchar [4], who used a Monte Carlo simulation to estimate
conflict probability. This approach is non-parametric and
has the advantage of not requiring any particular error dis-
tribution or trajectory constraints, but it requires approx-
imately three orders of magnitude more computation than
the algorithm presented here requires, and its feasibility in
an operational ATM system is questionable.

Conflict Probability Estimation

Aircraft trajectory prediction is a surprisingly complex
modeling and software problem that has been addressed in
CTAS. It requires current estimated position and velocity,
flight plan, and predicted winds aloft. It is inexact, primar-
ily because of wind modeling and prediction error and sec-

ondarily because of tracking, navigation and control error.
The positions and velocities are currently based on radar
tracking, and are provided, along with the flight plans, by
the FAA at their ARTCC facilities. The wind predictions
are provided by the Rapid Update Cycle (RUC) [10], a
weather prediction system operated by the National Cen-
ter for Environmental Prediction (NCEP) for the National
Oceanic and Atmospheric Administration (NOAA). The
algorithm to be presented in this paper requires predic-
tions of position and velocity for pairs of aircraft at their
point of minimum separation. Those predictions are pro-
vided by the CTAS Trajectory Synthesizer [8].

The CPE algorithm also requires a statistical model of
the distribution of errors on the predicted positions at the
point of minimum separation. Although any form of dis-
tribution can be used in principle, the Gaussian (normal)
distribution simplifies the derivation of the algorithm and
provides the potential for very efficient analytical forms
of computation. Many other estimation algorithms, such
as the classical Kalman filter, are also based on the Gaus-
sian model. Recent empirical studies [9] have validated the
Gaussian model of the trajectory prediction errors. For
purposes of this paper, the magnitudes of the prediction
error covariances and their growth rates are merely param-
eters that can be estimated empirically.

The Gaussian prediction errors can be represented as
ellipses in the horizontal plane or as ellipsoids in three-
dimensional space. Those error ellipsoids tend to have
their principal axes in the along-track, cross-track, and
vertical directions. Figure 1 shows a typical example of
prediction error ellipses in the horizontal plane, which tend
to grow in the along-track direction with time of predic-
tion. Because aircraft are usually flown at constant air-
speed or Mach number for better efficiency, the uncom-
pensated effects of wind modeling and prediction errors ac-
cumulate with time in the along-track direction. Position
feedback in the cross-track and vertical axes keeps the pre-
diction errors from growing in those directions. (The un-
certainty ellipsoid for a Gaussian random variable z is de-
fined as the solution of 27 Z 1z = ¢, where z = z — E(x),
Z = cov(z) = E(227), E is the expected value, and ¢ is a
constant that can be assumed to be unity unless otherwise
noted.)

The remainder of this section is divided into four sub-
sections. First, the method of combining two covariances
into a single covariance of the relative position prediction
error is discussed. Next, coordinate transformations are
derived that normalize the combined covariance and rotate
the coordinate system to simplify the probability calcula-
tion. Then the analytical solution is developed. Finally,
some heuristics and caveats are discussed.

Combined Error Covariance

The combining of error covariances is essentially the same
as in the earlier CPE procedure for level flight only, except
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Figure 1: Encounter geometry in the horizontal plane

that now it applies in three dimensions rather than two. In
vector /matrix notation, that difference is mathematically
implicit. Hence, this section is very similar to the corre-
sponding section in the earlier paper [1], but it is necessary
to make the paper complete.

The trajectory prediction error for an aircraft will be
modeled as Gaussian with zero mean and a covariance that
has eigenvectors in the along-track, cross-track, and ver-
tical directions, as explained previously. The covariance
matrix is therefore diagonal in a coordinate system aligned
with the aircraft heading and the vertical. If g is the air-
craft position in such a coordinate system, and ¢ is the cor-
responding prediction, then the prediction erroris § = ¢—¢q
and the corresponding diagonal covariance matrix is

S = cov(§) (1)

If R is the rotation matrix that transforms the heading-
aligned coordinates to the reference coordinates, then the
position prediction error in the reference coordinate system
is p = Rq and the corresponding covariance matrix is

Q = cov(p) = RSRT (2)

Unlike S, the covariance matrix () is not diagonal, but it is
block-diagonal because the vertical error is still decoupled
from the horizontal error.

Because the trajectory prediction errors are modeled
as Gaussian, the two error covariances for an aircraft pair
can be easily combined into a single equivalent covariance

of the position difference or the relative position of one
aircraft with respect to the other. For present purposes,
this combined covariance can be assigned to one of the
aircraft, referred to as the “stochastic” aircraft, and the
other aircraft, referred to as the “reference” aircraft, can
be regarded as having no position uncertainty.

Subscripts S and R will be used to designate the
stochastic and reference aircraft, respectively. If the po-
sition difference in the reference coordinate system is Ap
and the corresponding prediction is Ap, then the predic-
tion error is Ap = Ap — Ap = ps — pr- The combined
prediction error covariance is

C =cov(Ap) = Qs + Qr — Qsr 3)

where Qs and Qg are the individual covariances based on
(2), and the cross-correlation term Qsg is defined as
Qsr = E(pspr, + Prps) (4)
In general, the combined error ellipsoid corresponding to
C does not have principal axes aligned with the along-
track and cross-track directions of either aircraft, but the
vertical axis is still a principal axis. The vertical error is
therefore still decoupled from the horizontal error.

The cross-correlation of prediction errors between air-
craft, which is represented by (Qsgr, can be important for
aircraft pairs that are close together and heading in similar
directions. The cross-correlation is more difficult to model
than the individual covariances because it requires a spa-
tial wind-error correlation model. That correlation model
will be a function of both separation distance and heading
angular difference. The correlation is determined empiri-
cally in [11] as a function of separation distance, but not
as a function of heading angular difference. Aircraft pairs
with nearly perpendicular flight paths tend to have weakly
cross-correlated prediction errors because their along-track
positions are affected by different wind components. Air-
craft pairs that are close together and heading in similar
directions, on the other hand, tend to have more strongly
cross-correlated prediction errors, both because they are
affected by a common wind component and because they
spend a relatively long time close together. The portion of
those errors in common will cancel in the position differ-
ence, reducing the relative position error.

It will be assumed that the aircraft velocities and pre-
diction errors can be approximated as constant during the
encounter (period of potential conflict). It will also be as-
sumed that the velocities during the encounter are known.
These assumptions are reasonable for aircraft in steady
cruise. Aircraft in climb or descent usually have changing
speed, but the change is usually small enough during the
encounter that the value at the predicted point of mini-
mum separation can be used. Note that planned maneu-
vers of any kind prior to the encounter do not violate these
assumptions (assuming, of course, that the trajectory syn-
thesizer knows about them). However, such maneuvers
tend to increase the uncertainty of the predicted trajec-
tory, and that uncertainty is reflected in the covariance.



The combined error ellipsoid is centered on the
stochastic aircraft, and the conflict zone is centered on the
reference aircraft. The conflict zone is a vertical cylinder
10 nmi in diameter and 4000 ft high (or 2000 ft high for
altitudes under F1.290). The extended conflict zone is de-
fined as the volume swept out by the conflict zone as the
encounter evolves. It is the projection of the conflict zone
along the line of relative velocity. Because the relative
velocity is assumed to be constant, the extended conflict
zone is a straight tube. The total conflict probability is
equal to the portion of the probability mass density within
the extended conflict zone, where the total mass is unity.
The coordinate transformations to be presented in the next
section allow this probability to be determined analytically
for level flight or approximated analytically for non-level
flight.

Coordinate Transformations

The conflict probability is difficult or impossible to de-
termine analytically in the original coordinate system. It
can be determined numerically, but a numerical solution
is likely to be much less efficient than an analytical solu-
tion. Such inefliciency is undesirable for an algorithm that
is intended to run in an operational system at a high rate.
Fortunately, coordinate transformations have been found
that allow an exact analytical solution for the case of level
flight and a good analytical approximation for the case of
non-level flight.

The coordinate transformations consist of a non-
orthogonal transformation followed by an orthogonal
transformation or rotation of the coordinate system. The
non-orthogonal transformation transforms the combined
error ellipsoid into the standard form of a unit sphere. The
orthogonal transformation aligns the relative velocity with
one of the coordinate axes. These coordinate transforma-
tions must be applied to the relative position and velocity,
the combined error ellipsoid, and the cylindrical conflict
zone.

Non-Orthogonal Transformation

A non-orthogonal transformation distorts the shapes of the
error ellipsoid and the cylindrical conflict zone. The pur-
pose of this transformation is to transform the error ellip-
soid into the standard form of a unit sphere to simplify the
probability computations. In this form, the corresponding
three-dimensional probability density function decouples
into the product of three identical scalar functions.

A general linear coordinate transformation of the rel-
ative position and its error Ap is of the form

Apr =TAp (5)

where T is a transformation matrix yet to be determined.
In the transformed coordinate system, the mean error is
still zero and the combined error covariance is

cov(Apr) =TCTT (6)

where C is the combined error covariance in the original
coordinate system from (3).

A Cholesky decomposition [12] or “square-root” fac-
torization of the combined error covariance C' is of the form

C=LL" (7)
where L is lower triangular. By choosing
T=L" (8)
(6) can be simplified to the standard form
cov(Apr) =1 9)

where I is the identity matrix. This transformation there-
fore results in the transformation of the combined error
ellipsoid into the standard form of a unit sphere.

Because the vertical error is decoupled from the hor-
izontal error, the combined error covariance matrix is a
block-diagonal matrix of the form

| C, O
C = 0 o ] (10)
where the horizontal covariance is
o2 p ]
Ch = S 11
g | Pzy U; ( )
The Cholesky factor of C in (7) is found to be
L, o
L= 0 o ] (12)
with
= P ] (13)
loy 1y

where lpy = pay/0, and I, = (02 — p2,/02)'/?. The trans-
formation matrix is then of the form

_ra_|Tw O
T=L""= [ 0 1/o. (14)
where /
_ 1/0 0
T,=L;' = [ e ] 15
g h twy ]‘/ly ( )

with t5y = —(pay/0z)/1y-

The transformation T transforms the combined error
ellipsoid into a unit sphere. The same transformation must
also be applied consistently to the relative velocity and to
the cylindrical conflict zone. The transformation of the rel-
ative velocity is of the same form as the transformation of
the relative position (a simple matrix multiplication). The
transformation of the conflict zone is more complicated,
however, and will now be discussed.

The conflict zone around each aircraft is a vertical
right circular cylinder of radius R and half-height H. For
the legal separation requirements above FL290, the dimen-
sions of the cylinder are R = 5 nmi and H = 2000 ft. The



position p of points on the horizontal circles at any cross-
section of the conflict zone satisfy the equation pT Ep = 1,

where
[ ]

The matrix E specifies the horizontal cross-section of the
conflict zone, which is circular.

The transformation of the horizontal position p is of
the form pr = T}, p and the inverse transformation is of the
form p = Lypr. After substituting the inverse transforma-
tion into the equation for the circles, the new equation in
the transformed coordinates becomes pL. Erpr = 1, where

Er=LIEL, (17)

The matrix Ep specifies the horizontal cross-section of the
transformed conflict zone, which is an ellipse. Hence the
conflict zone has been transformed from a vertical right cir-
cular cylinder into a vertical right elliptical cylinder. The
vertical component of the transformation is decoupled from
the horizontal component and is simply zr = z/0,.

As mentioned above, the transformation of the er-
ror ellipsoid into a unit sphere simplifies the probabil-
ity computations considerably because the correspond-
ing three-dimensional probability density function decou-
ples into the product of three identical scalar functions:
p(z,y,2) = p(x)p(y)p(z), where p(s) = exp(—s*/2)/V/2r.
The probability density function can be represented as a
radially symmetric volume of variable mass density, where
the total mass is unity. The density is largest in the center
and decreases in any outward radial direction according to
a Gaussian “bell curve”.

Orthogonal Transformation

In the transformed coordinate system, the extended con-
flict zone still extends in the direction of the (transformed)
relative velocity. To simplify the probability computation,
an orthogonal transformation will be used to rotate the
transformed coordinate system such that the relative ve-
locity is in the direction of one of the coordinate axes.
An orthogonal transformation is a rotation of the coordi-
nate system and will therefore not further distort the error
sphere or the conflict zone.

The orthogonal transformation consists of two sepa-
rate rotations. The first rotation is about the vertical axis
to align one of the vertical coordinate planes with the rela-
tive velocity. The second rotation is about an axis normal
to that coordinate plane to align one of the coordinate axes
with the relative velocity. The second rotation is unnec-
essary if both aircraft are in level flight throughout the
encounter.

If the relative velocity in the original coordinate sys-
tem is Aw, the (non-orthogonally) transformed relative ve-
locity is

Avr=TAv=[v, vy v, ]T (18)

where T is defined in (14). After the first rotation of co-
ordinates about the vertical z axis, the relative velocity

N Av,=R.Avr=[v, 0 v, ]T (19)
where
R, = [ (Ifh (1) ] (20)
with
S

and v, = (V2 + v2)'/2. The subscript r designates the
coordinate system after this first rotation of coordinates.

The horizontal cross-section of the conflict zone is now
an ellipse specified by the matrix

E, = RyErRl = [ Sz Say ] (22)

Szy Sy

where E7 is defined in (17). The transformed conflict zone
is still a vertical right elliptical cylinder. After differenti-
ating the quadratic form by each of the independent vari-
ables x, and y,, then setting the derivatives to zero, the
extremal value of y, on the ellipse is found to be

Ymaz = V Sm/det (23)

where
det = 58, — siy (24)
These results will be used in the next subsection.

If either aircraft is in non-level flight during the en-
counter, a second rotation of coordinates about the y,. axis
is necessary to align the z, axis with the relative velocity.
After this rotation, the relative velocity is

Avg=RAvr=[v; 0 0 ]T (25)

where the subscript R denotes the final rotated and trans-
formed coordinate system, and where R = Ry R, with

1 v, 0 v,
R, =— 0 »p O (26)
Vg _
v, 0 v

and v; = (v} + v2)Y/2. The relative velocity is therefore
aligned with the xp axis. In this coordinate system, the
conflict zone is still a right elliptical cylinder, but it is
“tilted” about the y, axis and is therefore not aligned with
the z, axis.

An interactive Matlab program [13] has been devel-
oped to visualize transformed encounter geometries. It al-
lows the user to enter a path angle, a prediction time, and
a predicted minimum separation, among other parameters.
It was used to generate Figures 2 and 3, which illustrate ex-
amples of a level encounter and a non-level (level/descent)
encounter, respectively. In each case, the path crossing
angle is 45 deg, the prediction time is 10 min, and the pre-
dicted minimum horizontal separation is 2 nmi. For the
level case, the nominal vertical separation is a constant
1000 ft; for the non-level case it is 1000 ft at the point
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of minimum horizontal separation, with a descent rate of
1000 ft/min. The unit circles represent the error sphere,
of course. (For simplicity, the axes in Figures 2 and 3 are
labeled simply X, Y, and Z rather than zg, yg, and 2g.)

In Figure 2, because both aircraft are in level flight,
the relative velocity is horizontal and the transformed con-
flict zone is a vertical right elliptical cylinder. When viewed
from the direction of the relative velocity (bottom portion
of Figure 2), the conflict zone appears as a rectangle, and
when viewed from above (top portion of Figure 2) it ap-
pears as an ellipse. In level flight, the vertical rms error
tends to be much smaller than the horizontal rms error,
hence the coordinate transformation tends to drastically
stretch the vertical axis relative to the horizontal axes.
This distortion makes the conflict zone appear very tall
and narrow, with a typical height of 5 to 20 times its di-
ameter, but this effect is suppressed in Figure 2 to maintain
a reasonable scale.

In Figure 3, because one of the aircraft is descending,
the relative velocity is no longer horizontal, and the trans-
formed cylindrical conflict zone is no longer perpendicular
to the relative velocity. When viewed from the direction
of the relative velocity (bottom portion of Figure 3), the
conflict zone appears as an oblique view of a hockey puck.
Because it is tilted about the yg axis, however, its sides
still appear vertical when viewed from the direction of the
relative velocity along the xzp axis. When viewed from
above (top portion of Figure 3) the top and bottom of the
conflict zone appear as an offset pair of ellipses. In descent,
the vertical rms error is modeled as growing at 300 ft/min,
hence at a prediction time of 10 min it is 3000 ft. This
magnitude of error is much larger than it is in level flight,
so although the coordinate transformation still stretches
the vertical axis relative to the horizontal axes, it does not
do so nearly as much as it does in level flight. The same
distortion also increases the vertical component of velocity
and, hence, the descent angle. That is why the conflict
zone is tilted significantly more than the actual descent
angle, which is typically around 3 deg.

Analytical Solution

The extended conflict zone is the volume swept out by the
conflict zone as the encounter progresses. Its cross-section
is the projection of the cylindrical conflict zone onto the
plane normal to the relative velocity. For the case of level
flight, that cross-section is rectangular, as shown in Figure
2. The conflict probability therefore decouples into the
product of vertical and horizontal conflict probabilities and
can be determined exactly. For level flight, the solution to
be presented in this paper gives the same result as the
algorithm presented previously [1].

For non-level flight, on the other hand, the projection
of the cylindrical conflict zone is non-rectangular, as shown
in Figure 3. For the non-level case, an exact analytical so-
lution cannot be found. The projection could be “sliced”
vertically and an iterative numerical solution could be de-

veloped, but that was not found to be necessary. Instead, a
very good analytical approximation was obtained by using
a bounding rectangle of equal-area around the projection
of the cylindrical conflict zone, as illustrated in Figure 3.

The cross-sectional area of the projected conflict zone
can be determined by integration. The details will not be
presented here, but the area is

Ap =| Vz/Vt | TF/\/@'F 4H(Vh/’/t)ymaz/‘72 (27)

where det was defined in (24). The width w of the pro-
jection is not changed by the last rotation, hence it is still
Ymaz from (23). Hence, the height h of the equal-area
bounding rectangle can be determined by simply dividing
the area by the width. The result is

w/2
h/2 =

ymaz

AP/ (4ymaz) (28)

The conflict probability can then be expressed as an
integral in which the bounds of integration are the loca-
tions (in the transformed coordinate system) of the edges
of the bounding rectangle:

Ay tw/2
Az+h/2 (29)

Yo, Y1
20,21 =

where Ay and Az are the transformed relative position
coordinates, defined according to

Apr =RApr = RTAp=[ Az Ay Az ]T (30)

Because the three-dimensional probability density
function decouples into the product of three scalar func-
tions, p(z,y, z) = p(x)p(y)p(z), and the sides of the bound-
ing rectangle are parallel to the coordinate axes, the inte-
gral expression for the conflict probability P. can be sim-
plified as follows:

z1 Y1 oo
/ / / p(z,y, 2) d dy dz
ZQ Yo —00

Y1 z1 [ee)
/ p(y) dy / p(2) dz / p(z) do
Yo zZ0 —0o0

/y ) dy | p(2) dz

P(yo,y1)P(z0,21)
= Pthvc (31)

P,

where, for level flight, P} is the horizontal conflict proba-
bility and P, is the vertical conflict probability. For non-
level flight, P,. corresponds to the direction normal to the
relative velocity and in the vertical plane that contains the
relative velocity; Pp. corresponds to the plane normal to
that direction. The function P is the cumulative normal
probability function, defined as P(a,b) = f: p(s)ds, where
p(s) = exp(—s?/2)/v/2r. This function can be approxi-
mated analytically [12] with high accuracy and efficiency.



Computational efficiency is an important concern in
an operational system. Basic timing tests were performed
on the conflict probability algorithm running on a Sun Ul-
tra 1 workstation to estimate the computation time re-
quired. These tests were for the CPE algorithm only and
did not include wind modeling, trajectory prediction, con-
flict probing, or any other part of the problem. The average
computation time per aircraft pair was approximately 0.55
milliseconds. This computation time is two to four orders
of magnitude faster than a numerical solution, depending
on the method and level of resolution of the numerical in-
tegration. The high speed and precision of the algorithm
make it a very convenient analytical tool for generating
plots. More importantly, the algorithm is easily efficient
enough to be used in an operational ATM system. It can
even be used repeatedly in an iterative conflict resolution
algorithm, if necessary, to find a maneuver that will reduce
the conflict probability to some specified level.

Heuristics and Caveats

It is assumed that the aircraft velocities and prediction er-
rors are constant (in both magnitude and direction) during
the encounter (reasonable period of potential conflict) and
that the velocities are known during the encounter. As free
flight is phased in, trajectories will tend to become more
direct and have fewer turns, so the assumption of constant
velocity will be reasonably accurate for the vast majority of
encounters. Please note that the assumption of constant
velocity during the encounter does mnot preclude planned
turns or other maneuvers prior to the encounter. If the
trajectory predictor knows about the planned maneuvers,
and if those maneuvers end sufficiently far in advance of
the encounter, they do not violate the assumption of con-
stant velocity throughout the encounter. After a planned
turn or other type of maneuver, any uncertainty in the ex-
act maneuver can be accounted for by increasing the error
covariance, but the details are beyond the scope of this
paper.

It is worth noting that trajectory predictions are not
required at the exact point of predicted minimum separa-
tion. If the predictions are in discrete time increments of
several seconds, for example, the predicted positions near-
est to minimum separation can be used as follows to deter-
mine the “exact” predicted time of minimum separation.
For constant velocity, the time at which the minimum pre-
dicted separation occurs is

Apt Av

tm =t
m 0+AUTAU

(32)
where Apq is the position difference at time tg, and Av is
the constant velocity difference, both in terms of Cartesian
coordinates. The position difference at minimum separa-
tion is then

AvAvT

Apm = Ap() + (tm — to)AU = [I + m

] Apo  (33)

The minimum separation distance itself is the magnitude
of App,.

Small variations in aircraft velocity due to wind dis-
turbances or wind-optimal routing will have only a small
effect in the immediate vicinity of an encounter, so they
will usually not significantly violate the assumption of con-
stant velocity. The predicted velocity at the point of mini-
mum predicted separation is tangent to the flight-path and
can be considered a first-order linear approximation to the
actual trajectory at that point. In the unlikely event that
a large heading, speed, or altitude change is scheduled in
the vicinity of a potential conflict, the analytical solution
for conflict probability will not be accurate and should not
be used.

Three potential problems can occur for predicted con-
flicts with small relative velocity (similar headings and sim-
ilar speeds). First, the wind-error cross-correlation may be
high because wind error affects both aircraft similarly. A
significant portion of the prediction error, therefore, can-
cels in the position difference, reducing the effect of the
wind error. This reduction is desirable, but it may be dif-
ficult to model accurately. Second, the direction of the
small relative velocity vector will be more sensitive to ve-
locity errors, and the conflict probability estimate depends
strongly on the direction of the relative velocity. Third,
the small relative velocity also means that encounters of
this type tend to have longer duration, so the assump-
tions of constant velocity and constant covariance during
the encounter are more likely to be inaccurate. For these
reasons, the CPE algorithm should probably not be used
for extreme cases of this type. Fortunately, these types of
conflicts develop slowly and give the controllers more time
to respond, so CPE is not as important for these cases as
it is otherwise.

Finally, a note about vertical conflict probability for
level flight. In the current ATM system, aircraft altitudes
are based on static pressure readings onboard the aircraft.
Those readings, which are discretized in units of 100 ft
(flight levels), are sent by the aircraft transponder to the
ground tracking radar, which relays them to the host com-
puter in the ARTCC Centers. For level flight, if the alti-
tude is within 200 ft of the cleared altitude, the host com-
puter rounds the measured altitude to the cleared altitude.
Above FL290, the required altitude separation is 2000 ft,
and if the nominal altitude separation is 2000 ft or more,
the two aircraft are not considered to be in vertical con-
flict, even though they could possibly have only 1600 ft of
altitude separation. However, if the nominal and required
altitude separations are both 2000 ft, the CPE procedure
computes a vertical conflict probability of 50%. Clearly,
this is not a proper use of CPE. In the current ATM sys-
tem, the vertical conflict probability is not very useful for
level flight. However, it can be replaced very easily with
discrete logic that simply sets the vertical conflict proba-
bility to 0 or 1, depending on the altitude separation.



path crossing angle, deg

minimum predicted separation, nmi
time to min separation, min
4 | 8 | 12 | 20

15| 0 || —.000 | +.001 | —.005 | —.005
15| 5 || +.002 | +.002 | +.002 | 4.006
45 | 0 || —.002 | +.004 | +.004 | —.007
45 | 5 || +.004 | +.006 | —.001 | —.007
90 | 0 || +.001 | +.002 | +.002 | +.001
90 | 5 || +.001 | —.006 | —.006 | —.001
180 | 0 || +.002 | —.004 | —.000 | +.002
180 | 5 || —.002 | —.003 | +.006 | +.005

Table 1: Selected Monte Carlo simulation results for level
flight: computed minus empirical conflict probability based
on 10,000 samples per entry

Monte Carlo Simulation

The Gaussian prediction error model on which the CPE al-
gorithm is based was determined empirically by analyzing
actual air traffic data [9]. More work is being done in this
area, but it is outside the scope of this paper. A Monte
Carlo simulation was used to test the algorithm itself. The
simulation was not intended to test the assumptions and
the error model. In the Monte Carlo simulation, combina-
tions of path-crossing angles, minimum predicted separa-
tions, and prediction times (time to minimum predicted
separation) were generated. For each combination, the
conflict probability was computed and nominal trajectories
were generated. Then the nominal trajectories were per-
turbed by a series of random prediction errors, each con-
sisting of constant cross-track position error and an along-
track position error that increases linearly with prediction
time. These randomly generated errors had the same ex-
pected statistics used in the conflict probability algorithm:
2 nmi rms cross-track error and 0.25 nmi/min rms along-
track error growth rate. Wind-error cross-correlation was
not modeled. The empirical fraction of cases in which con-
flicts resulted was compared with the computed conflict
probability.

Table 1 shows a representative selection of the differ-
ences between the computed conflict probabilities and the
Monte Carlo simulation results for level flight. The flight
conditions are typical for a commercial transport aircraft
in level flight. Each entry in Table 1 corresponds to a par-
ticular encounter geometry, and 10,000 Monte Carlo sam-
ples were run for each entry. Although not all cases are
shown in Table 1, the path crossing angle was incremented
in 15 deg steps from 15 deg to 180 deg, and the minimum
predicted separation was incremented in steps of 2.5 nmi
from 0 to 10 nmi, and the prediction time was incremented
in steps of 4 min from 4 min to 24 min. The algorithmic
results match well with the simulation results. The largest
difference for all cases tested was 0.015 or 1.5% (it does
not appear in Table 1, which gives only selected results).

path crossing angle, deg

minimum predicted separation, nmi
time to min separation, min
4 | 8 | 12 | 20

15| 0 || +.002 | +.000 | —.000 | —.002
15| 5 || +.003 | —.006 | +.002 | —.002
45 | 0 || —.000 | +.002 | +.002 | —.004
45 | 5 || +.002 | —.002 | —.001 | +.002
90 | 0 || +.001 | +.002 | +.001 | —.001
90 | 5 || —.002 | +.000 | +.010 | —.001
180 | 0 || +.000 | +.001 | +.001 | —.001
180 | 5 || —.002 | +.005 | —.001 | +.005

Table 2: Selected Monte Carlo simulation results for non-
level flight: computed minus empirical conflict probability
based on 10,000 samples per entry

Given the accuracy of the underlying error model and the
requirements of the application, this result is more than
adequate. A maximum difference of perhaps 5% would
have been considered adequate.

The expected standard deviation for each entry of Ta-
ble 1is ¢ = /P.(1—P.)/N, where P, is the conflict
probability and N is the number of samples. Note that
P.(1-P.)=0if P.=0or P. =1, and the maximum pos-
sible value of \/P.(1 — P.) is 1/2 when P, = 1/2. Thus, the
maximum expected standard deviation for any entry can-
not exceed 0.005. For each entry (and for the many other
encounter geometries not listed in Table 1), the magnitude
of the entry was divided by its corresponding o to deter-
mine the normalized difference between the computed and
empirical conflict rates. The maximum normalized differ-
ence was approximately 3.6. This result is reasonably con-
sistent with the claim the CPE algorithm determines an
exact solution for level flight under the previously stated
assumptions. The algorithm is therefore validated for level
flight.

Table 2 shows the same information as Table 1 except
for non-level flight rather than level flight. The altitude
separation at minimum horizontal separation is zero, and
the descent rate of one of the aircraft is 1500 ft/min (the
other aircraft is flying level). The rms vertical error growth
rate in descent is 300 ft/min. These parameters are typi-
cal for encounters between an aircraft flying level and one
in descent. As before, 10,000 Monte Carlo samples were
run for each entry. Although not all cases are shown in
Table 2, the path crossing angle was incremented in 15
deg steps from 15 deg to 180 deg, and the minimum pre-
dicted separation was incremented in steps of 2.5 nmi from
0 to 10 nmi, and the prediction time was incremented in
steps of 4 min from 4 min to 24 min. Again, the algo-
rithmic results matched well with the simulation results.
The largest difference for all cases tested was 0.019, or less
than 2%. The maximum normalized difference was 3.8. As
before, this result is more than adequate. The equal-area
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Figure 4: Separation probability density for level flight,
with prediction time as a parameter

bounding-rectangle approximation for non-level flight (as
shown in Figure 3) is therefore justified, and the algorithm
is validated for non-level flight.

It was noted above that, for Table 2, the altitude sep-
aration at minimum horizontal separation was zero. Be-
cause the CPE accuracy could depend on this parameter,
the simulation was rerun several times with different val-
ues. The altitude separation at minimum horizontal sep-
aration was varied by increments of 250 ft from -4000 to
4000 ft, and the equivalent of Table 2 was generated for
each case. The worst case difference occurred when the
altitude separation at minimum horizontal separation was
3000 ft, and the difference between the computed and em-
pirical conflict rates was under 5%. Again, that is more
than adequate.

Numerical Examples

A set of numerical examples of conflict probabilities and
related quantities were generated and plotted for a wide
range of encounter geometries. The efficient and precise
analytical solution made these plots much faster to gen-
erate than they would have been if numerical integration
were required. The aircraft speeds were 500 kn for steady,
level flight and 300 kn for descent, with a nominal de-
scent rate of 1500 ft/min. These are typical speeds for
commercial transport aircraft. The conflict separation dis-
tance was 5 nmi horizontally and 2000 ft vertically, the
current legal separation requirements above FL290. For
level flight, the vertical rms error was 100 ft, the cross-
track rms error was 2 nmi, and the along-track rms error
started at 0.25 nmi and grew linearly at a rate of 0.25
nmi/min. For descent, prediction errors tend to be larger
than in cruise: the vertical error grew at a rate of 300
ft/min, and the along-track rms error grew at a rate of
0.333 nmi/min. Wind-error cross correlation between air-
craft was not modeled.
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Figure 5: Conflict probability as a function of minimum
predicted separation for level flight with a path crossing
angle of 90 deg, with prediction time as a parameter
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Figure 6: Conflict probability as a function of prediction
time for level flight, with minimum predicted separation
as a parameter
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eter
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Figure 9: Conflict probability as a function of prediction
time for non-level flight, with altitude separation as a pa-
rameter

Figure 4 shows the separation probability density for
level flight, with prediction time (time to minimum pre-
dicted separation) as a parameter, where the path-crossing
angle is 90 deg and the minimum predicted separation is
zero nmi (an exact collision). This density function is the
derivative, with respect to minimum separation, of the cu-
mulative separation probability. It was determined by nu-
merical differentiation of results from the CPE algorithm.
The plot shows how the density function spreads out as
prediction time increases. Note also that separation prob-
ability density is not Gaussian even though the error model
on which it is based is Gaussian. This is because separation
is a nonlinear function (root-sum-square) of the relative
position coordinates.

In Figure 5 conflict probability is plotted as a func-
tion of minimum predicted separation for level flight with
a path crossing angle of 90 deg, with prediction time as

11

a parameter. This figure shows the dependence of con-
flict probability on the predicted minimum separation for
a particular class of encounters. The nonlinear dependence
is interesting because, before CPE was developed, the min-
imum predicted separation was the best indicator of con-
flict probability, and it was often used as an intuitive sub-
stitute for conflict probability. The controller had to create
a crude mental model of the function, which was difficult
enough without even considering the effect of prediction
time and path crossing angle. Now that can all be done
automatically for the controller.

In Figure 6 conflict probability is plotted as a function
of prediction time for level flight, with the minimum pre-
dicted separation as a parameter, where the path-crossing
angle is 90 deg. For small prediction times, the covari-
ances are small and the conflict probabilities are a strong
function of minimum predicted separation. For larger pre-
diction times, the covariances grow and the conflict prob-
ability becomes a weaker function of the minimum pre-
dicted separation. The conflict probabilities converge and
asymptotically approach zero as prediction time increases.
When the minimum predicted separation is greater than
the minimum allowed separation, the conflict probability
decreases monotonically with prediction time. However,
when the minimum predicted separation is less than the
minimum allowed separation, the conflict probability first
increases to a maximum and then decreases. This is be-
cause the error ellipses start apart and begin to overlap as
they grow, but then as they continue to grow they become
more diffuse.

In Figure 7 conflict probability is plotted again as a
function of prediction time for level flight, but with the
path-crossing angle as a parameter, where the predicted
minimum separation is 0 nmi. As the prediction time in-
creases, the conflict probability decreases faster for smaller
path-crossing angles. If wind-error cross correlation were
taken into account, however, these curves would be very
different for small path crossing angles. A portion of the
trajectory prediction error would cancel in the position
difference, and the effective error growth rate would be
smaller. Hence the conflict probabilities for smaller path
angles would be higher than these shown in the Figure 7.
The same information was also plotted with speed differ-
ence as a parameter, but they are not shown.

Figure 8 shows the first example of results for non-
level flight. It shows the plot corresponding to Figure 6,
but for a level/descent encounter. One of the aircraft is in
a typical descent for the final 7 min before minimum sep-
aration, hence the top of descent appears at a prediction
time of 7 min. The effect of the increased error growth rate
in descent is apparent, and the accumulated effect extends
back into the period before the descent even starts. The in-
creased uncertainty in non-level encounters obviously tends
to make them more difficult than level encounters for con-
trollers. CPE can augment the controllers judgement by
providing a systematic method of determining the appro-
priate time to alert them of a potential conflict and the



necessity for resolution.

In Figure 9 conflict probability is plotted again as a
function of prediction time for a level/descent encounter,
but this time with predicted altitude separation (at the
point of minimum horizontal separation) as a parameter.
This figure shows the effects of increased altitude uncer-
tainty (as well as non-level flight path) for a typical non-
level encounter. Note that when the predicted altitude sep-
aration is 3000 ft, or even 4000 ft, the probability of conflict
is still significant, whereas in level flight it is insignificant
when the altitude separation is the minimum required 2000
ft. CPE can therefore give controllers guidance on the al-
titude separation buffers required for encounters involving
climbing and descending aircraft.

Conclusion

A method that had been previously developed to estimate
the probability of conflict for aircraft pairs in level flight
has been generalized to non-level flight. A Monte Carlo
simulation was used to successfully test the accuracy of the
algorithm (but not the validity of the assumptions or the
accuracy of the underlying error model, which are outside
the scope of this paper). The CPE algorithm is compu-
tationally efficient enough to be used directly in an op-
erational ATM decision support system, and it has been
integrated into CTAS and tested at two ARTCC facilities.
It has also been tested and calibrated off-line on real air
traffic prediction data from CTAS. In future work, CPE
will be used to help air traffic controllers determine when
and how to efficiently resolve conflicts.
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